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Outline of talk:

Introduction  

Experimental Facility

Results and Discussion

Summary

22nd AIAA/CEAS Aeroacoustics, Lyon, France, June 1,  2016 Zaman/GRC



33

Distributed Propulsion

(From Felder, Kim & Brown 2009)

In one (hybrid) version of 

the concept each septum is 

driven by an electric fan

22nd AIAA/CEAS Aeroacoustics, Lyon, France, June 1,  2016 Zaman/GRC
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Concern about impact on noise. Will noise be greater than that from a 

equivalent single jet ?
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Experimental Facility

Open Jet rig (CW17)

Close-up view of nozzle and HW

- Up to about 500 kPa allowed

- Microphones overhead

- 8:1 rectangular nozzle 

(14.1 cm x 1.68 cm)

- Inserts made by 3-D printing

22nd AIAA/CEAS Aeroacoustics, Lyon, France, June 1,  2016 Zaman/GRC
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Experimental Facility (inserts)

Picture of 8 inserts

Schematic of exit shapes

Internal geometry 

design I and design II

Insd

Flsh

OutF

OutT

Sclp

Tab1

Tab2
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-Different exit shapes examined for

maximum noise reduction

-Number of septa varied with Design II
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Lower noise on low 

frequency end for the 

Flsh case, at all Mj.

Not accounted for by 

exit area reduction

(11% smaller Deq => 

1.3 dB)
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SPL Spectra comparison: Baseline vs. Flsh cases 
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SPL Spectra comparison: Flsh vs other cases at Mj=1
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Maximum noise reduction with Flsh case. Sclp and Tab cases have comparable result.   
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SPL Spectra Flsh vs Baseline at other angular locations; Mj=1

Narrow side (=90°); =90

Broad side (=0°); =25
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Flsh case exhibit similar noise 

reduction at other azimuthal 

() and polar () locations
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SPL Spectra data measured in the AAPL
Flsh vs. Baseline cases; Mj=0.99

Carpet plot of PSD 

Broad side (=0°)

24  locations

Direct comparison at =0°, =90°
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Observation in CW17 is 

confirmed by accurate data 

taken in the AAPL  
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U/Uj contours at x/D=2, Mj=0.265
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For reasons not yet 

understood, an asymmetry 

develops. The pairing of cells 

is likely due to streamwise 

vortex dynamics.  
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U contours at x/D=2; Mj =0.265

6-septa (flush) design I and II and Sclp case
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No such pairing with design II case. Note only 5 cells for Sclp case.  

Sclp
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x/D=0.04

x/D=1

x/D=2

x/D=4

Baseline Flsh

Cross-sectional distributions of U at different x
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Detailed profiles 

of U and u’ in 

paper. By x/D=16 

flowfield is seen 

to become axi-

symmetric for 

both cases
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Carpet plot of PSD 

24  locations

AAPL data 

SPL Spectra data for different  ;  = 90o

Flsh case; Mj=0.52

CW17 data on major axis (=90°) 
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Earlier measurement in CW17 (=0) 

missed the spectral peak.  When 

nozzle turned 90° peak appeared 
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SPL Spectra at Mj=0.52 on major axis 

for four different inserts compared to Flsh case 
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All inserts yield 

the high-freq 

spectral peak at 

low Mj. It is most 

intense with the 

Insd case
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Strouhal number corresponding to spectral peaks
Data for Flsh and Insd cases

t = trailing edge thickness of partition

(Microphone as well as HW data)
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These data clearly 

suggest the high-

frequency spectral peak 

is due to Karman vortex 

shedding from the TE of 

the partitions.
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Schlieren pictures of flowfield Mj=1.00
Baseline and Flsh cases
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The Flsh case exhibit vortex shedding from the TE of partitions   
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Schlieren pictures of flowfield
Flsh case, major axis plane

Mj = 0.61 Mj = 1.00 Mj = 1.09
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Zoomed-in pictures 

show the asymmetric  

vortex shedding that 

is persistent even at  

supersonic condition 

with the presence of 

shocks
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Conclusions

Nozzle with septa is quieter than corresponding baseline nozzle.

Cellular flow structure for the septa case (design I) goes through 

a curious evolution downstream where adjacent cells pair.

Centerline mean velocity exhibit an upstream shift of the jet for 

the septa case. Turbulence intensity is reduced downstream.

At lower Mj a high-frequency tone occurs that is heard prominently

on the major axis. It is due to Karmann vortex shedding from the 

TE of partitions separating the septa. 
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SPL spectra for Design II inserts with 

varying number of septa
Microphone on major axis
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These results demonstrate that the shedding tone intensifies with more number 

of septa (closer proximity of the partitions).
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Flsh septa case involves 

a faster plume decay and 

lower turbulence 

downstream  


